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In 1979, Bjornestal obtained a local estimate for a modulus of uniform continuity
of the metric projection operator on a closed subspace in a uniformly convex and
uniformly smooth Banach space B. In the present paper we give the global version
of this result for the projection operator on an arbitrary closed convex set in B.
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1. INTRODUCTION AND PRELIMINARIES

Metric projection operators P, on convex closed sets Q2 (in the sense of
best approximation) are widely used in theoretical and applied areas of
mathematics, expecially connected with problems of optimization and
approximation. As examples one can consider iterative-projection methods
for solving equations, variational inequalities and minimization of func-
tionals [1], and methods of alternating projections for finding common
points of convex closed sets in Hilbert spaces [ 10, §, 97].

Let us recall the definition of the metric projection operator. Let B be a
real uniformly convex and uniformly smooth (reflexive) Banach space with
B* its dual space, Q a closed convex set in B, and {w, v) a dual product
in B, i.e., a pairing between we B* and ve B ({y, x) is an inner product
in Hilbert space H, if we identify H and H*). The signs |-| and || g«
denote the norms in the Banach spaces B and B*, respectively.

DerFiNITION 1.1.  The operator P,: B— Q2 < B is called a metric projec-
tion operator if it yields a correspondence between an arbitrary point x € B
and its nearest point x € 2 according to the minimization problem

Pox=x%  X:|x—x|=lim |x—¢&. (1.1)
e
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Metric projection operators have extremely good properties in Hilbert
spaces [ 14, 20, 1]. However this is not generally true in Banach spaces. For
example, operators P, do not posses such important properties as
monotonicity, non-expansiveness and absolutely best approximation [1],
which make the metric projection operators in Hilbert spaces exceptionally
effective. To illustrate this let us recall the properties of a metric projection
operator on a subspace M of a Hilbert space. Here, such an operator is
orthogonal, linear, non-expansive, self-adjoint and idempotent [10].
Metric projection operators on a subspace M of a Banach space have no
such properties in general [13].

However, P, does possess a number of good qualities realized in very
important applications [2, 3]. For example, it is uniformly continuous in
a Banach space B on each bounded set and satifies the basic variational
principle [16] (see also [ 11, 18])

{J(x—x),x—=&)> =0, VéeQ. (1.2)
Here J: B— B* is duality mapping in B defined by the equalities [ 16, 1]
X, x) =[x e llx] =[x

The smoothness properties of the metric projection operator have been
studied for a long time. In Hilbert space it satisfies the Lipschitz condition
and, consequently, it is uniformly continuous. It is known that in a
uniformly convex Banach space the metric projection operator is always
continuous but not always uniformly continuous.

The results of F. Murray and J. Lindenstrauss (see [14]) suggest the
following problem: “Is the operator P, uniformly continuous in a
uniformly convex and uniformly smooth Banach space?” In 1979,
B. Bjornestal obtained a positive answer to this question in the form of the
estimate [ 7]

1Pyx =Pyl <20 5 (2p 56 [Ix = y])), (1.3)

where M is a closed linear subspace of B, pz(7) is a modulus of smooth-
ness, d4(¢) is @ modulus of convexity of the space B, and J ;'(-) is the
inverse function to dgz(e) [15]. But this result was only local (it is fulfilled
if x and y are sufficiently near to each other and |[x —X||=1, |y — | =1).

Recently, in the paper [ 19] the following global estimate was established
in a uniformly convex and uniformly smooth Banach space B

1Pox —Poyll < lx—y| +4C, 0 5 (Np(llx— »[/Cy)) (1.4)
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where N is some fixed constant, C; =[x — Po y| v [|[Pox — |, and y is the
function defined by the formula

In [4] we obtained another estimate of the uniform continuty of the
metric projection operator in a uniformly convex and uniformly smooth
Banach space B:

IPox —Poyl < Cgp'(NCgzi (N [lx—yll)), (1.5)

where gg(e (¢)/e, g5'(-) is an inverse function, N=2LC, L is
constant, 1<L<3.18 (see [12]) and

C=2max{l, [x—Poyl, [ly —Pox|}.

However, simple calculations show that Bjornestal’s estimate (1.3) is
better than (1.5), firstly by comparing their orders. For instance, known
estimates for the moduli of convexity and smoothness of the space /7, L?
and W?* where co>p>1,

pe(t)<p~'t7, dsle)=(p—1)e’8,  1<p<2,
pe(t)<(p—1)7° dse)=p~'(e2)", 0 >p>2
give the following orders: for (1.3)

IPox—Poyl~lx—yI*",  p=2,
and for (1.5)
1Pox—Poyll~|x—y|"7="D,  p=2

Note that for p>2 we have 2/p>1/(p—1).
Let now 1 < p <2. Then the estimate (1.3) yields

[Pox—Poyl ~lx—yl??, 2=2p>1,
and for estimate (1.5) we have
1Pox—Poyll~lx—yI”~!,  2=p>1

Note again that for 1 < p <2 we have p/2> p —1. For p =2 (Hilbert case)
(1.3) and (1.5) give the same orders:

[1Pox =Pyl ~lx—yl.
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Let us emphasize again that (1.3) is a local estimate. In the next section
we will obtain its global form for arbitrary closed convex set 2 in a Banach
space.

2. AUXILIARY THEOREMS

The lower and upper parallelogram inequaliteis and estimates of duality
mappings in uniformly convex and uniformly smooth Banach spaces
(respectively) obtained first in [5, 6, 17] are used as the basis in order to
prove uniform continuity of te metric projection operators in Banac spaces.
In tis section we will prove two auxiliary theorems.

THEOREM 2.1. In uniformly smooth Banach space B the following
estimate

Ix=Jy,x—yy <8 |x—y|*+ Cps(lx—yl),  Vx,yeB (21)
is valid, where
C=C(|lx[l, [yl =4 max{2L, |Ix] + | y[}.
Proof. Denote
D=27"(|xI*+ [ ¥II> =127 (x + »)[%/2)

and consider two possibilities:

(i) Let |lx+y] < x—y|. Then
lxl + Iyl < llx 4yl + lx =yl <2 [|x—y|.
Squaring this expression, we obtain
27N IxIP 27 Il + Dl Iyl <2 lx =yl

Now, let us subtract |27 !(x + y)||*> from both sides of this inequality. We
have

DL2Ix=yI2 =27 x4+ WP+ lIx] 1 y1D-
IF 127 (x + p) I + x| [ »]l = llx — y[* then immediately

D<|lx—yl* (2.2)
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Suppose that the opposite inequality occurs. In this case, it is easily verified
that

27N X2+ 27 P = 127 (x4 )12
<27+ )2+ ) Iyl < llx =yl

which follows from the estimate (|| x| — | y])> < |x + y||? ie., (2.2) is valid.
(i1) Let now |x+ y| =[x —y|. It can be shown that

[xI+ Iyl —=llx+yl<elx, y) (2.3)
where
x—yll
ot )= Lx-+ 31 o . (24)
[x+ yl

Indeed, let us replace
x=1(u+v), y=3%(u—vo)
and set

u v

o=— f=—"

luell” laell”
Using the definition of the modulus of smoothness p (), one can write
Il =l =l + pl =27 (llu+ vl + lu—oll) = u]
=271 ull (lloe+ Bl + lloe + BIl —2)
< lull sup[2~ (o + Bl + o= S1)
=1 e =118l =7]
< Hlull pslBI1D-

Returning to the previous notation we obtain (2.3) and (2.4). Thus,

> 1]l + Hylfﬁ(x, )

X+y
2

The right hand part is nonnegative. In fact, using the property pg(7) <=7
[15] we establish the inequality

Il + Iyl = eCx, y) = lxl + [yl = lx =yl =0.
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Then
S 2><|x| : y|>2_8(x’ PILEIE]
By virtue of || x| — || y|| < ||lx — y|| we have
D<<|x|2|y>2+e(x, ) I\X\I;Hyl\
< xz;y * e, y)w. (2.5)

(a) Suppose that |x+ y| <1 then |[x+ || ' [[x—y|>[x—y|. It
is known [ 12] that the inequality

3 pu(t,) < Ll py(ty), 0<1, <15, 1<L<318 (2.6)

holds in an arbitrary Banach space. By (2.5) and (2.6)
pullx = yl/Ix+ ) <L llx+yl =2 ps(llx =y
It follows from the last estimate that
D<A [x—plP+ 27 'L(lx ] + Iyl lx+y1 =" pslllx =yl
So for ||x+ y|| = ||x — y|| we have
27 x4+ Axl+ Iy <2 lx+pD " Ux + pl+ lx =yl < 1.
Therefore
D<A |x=ylIP+ Lps(|x = yl). (2.7)

(b) Let us now assume |x+ y| > 1. Then we obtain in addition to
(2.7), the form

D<A x—plIP+ 27 (Ixl + 1y psllx =yl (2.8)

Here we used (2.5) and the convexity of pg(t). The estimates (2.2), (2.7)
and (2.9) joined together give

20xI2+2 1y + Ix + pI?
<4 |lx—y? +2max{2L, x| + [ »II} ps(lx—yl).

This is the upper parallelogram inequality in a uniformly smooth Banach
space [6].
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Denote the right hand part of this inequality by k(||x — y||). Then
D <k(|x—yl)/4. (2.9)

Further, for the convex function ¢(x) = ||x||?/2, let us construct the con-
cave (with respect to 4) function

(A =29(x)+(1 =) d(y)—d(y+ix—y)), 0<i<L

It is obvious that @(0)=0. Suppose 0<i,<A,. Then A; @(4,)=
25 '®D(4,), ie., (@(1)/4) <0. From this expression we have QD’()L) < D(A)/A.
In particular, @'(1/4) <4&(1/4). But
D7) =5(x)+30(y)—d(zx+3 )
It follows from (2.9) that for all z, and z,
¢ <Zl +22> >(15(21) #(z5)

; SRk =y,

Let us set z, = (x + y)/2 and z, = y and use the property k(#/2) <k(t)/2. We
obtain

¢<;x+3y>:¢<;<;x+;y>+;y>>¢;<)‘;y> (5
¢

xX—=y
2

1 1 1
(¥)+ 5 90— 16k(|x—y|)+2¢(y>—8k<

[

3 1
= 000+ 00 — g k(lx =),

B

Thus, @(1/4) <k(|x—y|)/8 and
D'(1/4)=¢(x) = P(¥) =P (y + 5 (x = p)), x = y> <k(||x = p|)/2.

Furthermore, writing this inequality with y and x in place of x and y we
get

$(y) = ¢(x) = {P'(x+ 3 (¥ —x)), y —x) <k(|x = yll)/2.
Summing the two last inequalities gives
P (x+3(x=p)=¢'(y—3(x=p), x=y)> <k(|x—pl).
One can now make a non-degenerate substitution of the variables x and y

2 =2x—5(x—y), =2y +35(x—y)
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which leads to relations
Zy—zZ,=x—y and [xl + Iyl < llzil + 22

Taking into consideration the fact that Jx=¢'(x) is a homogeneous
operator, we find

Jzy—Jzy, 20— 220 <2k([|2 — 25
The theorem is completely proved.

The proof of the next inequality is shorter than the previous, but it has
the constant L and the function C(|x||, || »|/) under the sign of the modulus
of smoothness p z(7).

THEOREM 2.2. In a uniformly smooth Banach space B the estimate
(Jx—Jy, x—y> <L) p48CL [x—yl),  Vx,yeB (2.10)
is valid, where

C=C(lIx[l, [yl =2 max{1, /(Ix[I* + [ y[|*)/2}

Proof. Lemma 2.1 from [4] (cf. Theorem 2 from [5]) gives the follow-
ing estimate

(Ix=Jp,x—p> = (2L) " 0 gl | Jx — Iyl 5= /C) (2.11)

for a uniformly smooth space B. From (2.11) we have
15 = Jyll g |x =y = (2L) 7" 6 gul([|Ix — Iy || 5+ /C).
Since g z«(e) = 0 g«(€)/e, we can write
g [lJx = Jy| p«/C) S2CL | x — y||. (2.12)

It is known from the geometry of Banach spaces [ 15] that

pp(t)=et/2 — 0 pele), 0<e<g2, 7=0.
Therefore

P 5(40 p(£)/€) = 0 pu(e).

We denote hg(t) = py(t)/r. Then

hp(4g p(e)) = e/4.
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Setting
e=[lJx —=Jy| 5/C,

and using the non-decreasing property of the function /4 4(7), we find from
(2.12)

hp(4g p+(e)) <hg(8CL ||x —y|).
Therefore
[Jx —Jy| g« <4Chp(8CL || x — y|). (2.13)

Now, (2.10) can be obtained from the inequality of Cauchy—Schwarz. The
theorem is proved.

Remark 2.3. C(| x|, || y]l) in estimates (2.1) and (2.10) are absolute con-
stants C=8 max{L, R} and C=2max{l, R}, respectively if |x| <R and
| v[| < R. In these cases, (2.1) and (2.10) are a quantitative description of
the property of uniform continuity (in the form of a dual product) for the
duality mapping J. At the same time (2.13) gives the modulus of uniform
continuity of J in traditional form.

3. MAIN THEOREMS

In this section we will provide the estimates for the conitnuity of the
metric projection operator on a convex closed set of a uniformly convex
and uniformly smooth Banach space B. In the case when |x|| and | y| are
uniformly bounded, they are the estimates of the moduli of a uniform con-
tinuity of this operator on each bounded set of B.

THEOREM 3.1.  In a uniformly convex and uniformly smooth Banach space
B the following estimate

1Pox — Pyl < Co 5 '(2LC, p(x—yl)), (3.1)
is satisfied where

C=2max{1, [|x— 7yl |y — [},
C,=16+24max{L, |x—y|, |y —x|}.

Proof. 1Tt is known [5] that

a0 = pu(t) =T+ 0 =127t +2)
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Then

pa(llx—yll) =[x —yI?/(lx—y| +2).
From this we have

Ilx—yIZ<(llxl + [yl +2) ps(lx—yl),

and taking (2.1) in consideration, we obtain

Ix=Jy, x—y> <Cpplllx—yll)
where
C,=16+24 max{L, |x|, |y}

Now let us turn to estimating the convex functional ¢(x)= |x|%. We have
lx=pI2 =1y =7I?<2<J(y—=p), x = y) +{J(x =) = J(y = 7), x = y>

S2{U(y=p) x—y> + Coppllx—yl),
C,=16+24max{L, |x -7, [y —7l}.

By analogy with the above, we can write
1y = X[7 = llx = X|* <2 (x = %), y = x) + C5 pp([x—yll),
Cy;=16+24 max{2L, |x—x|, ||y — x| }.
Add the last two inequalities. Then
(lx = 71 = lx = %) + (Ily = %12 = |y = 711*)
L2y =) =J(x=X), x = y> +2C,pp(Ix—yl),
Cy=16+24 max{L, [[x—7y|, ||y —x|}.

It is known [16] that
Jx=x)=J(y—y),x—y>=0.
Therefore
(Ix = 70* = llx = %I)* + (|y = % = |y = 71*) <2Caps(Ix—y[).  (32)

The conditions of uniform convexity of the functional ¢(x)=|x|? and
uniform convexity of the Banach space B gives

([x = 17 = llx = %11*) = 2<J(x = %), X = 7> + (2L) =" 6 5(| X — 7l/Cs),
Cs=2max{l, [x—7, [x—x[}
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and
(Ily =12 = lly = ylI*) = 2<{J(y = 7), £ = y> +(2L) "' 9 5([|¥ — 7]/ Cs),

Co=2max{L, |y—x|, [y—7l}.

Using
Jx=x)=J(y—y), x—y) =0,

[16], we obtain

(Ix = 712 = Ix = %) + (ly = %> = |y = 711*) = L' 5([|X = FI|/C7),
¢;=2max{l, |x—pl,y—x|}.

It follows from (3 2) and (3.3) that

L7105(x—7]/C7) <2C4pp(lx —yll).
Finally, we have (3.1). The theorem is proved.

Next we formulate a statement corresponding to the estimate of the
duality mapping (2.10).

THEOREM 3.2. In a uniformly convex and uniformly smooth Banach space
B the following estimate

[Pox—Pqoy| <CO,5 ' (pp(8LC |x—yl)) (3.4)
is satisfied, where
C=2max{L, |x—y, [y —x|}.

We omit the proof of this Theorem because it is similar to the proof of
the previous Theorem 3.1.

Remark 3.3. For the Hilbert space H one can write (3.4) in the form
[Pox—Poy| <16LC? ||x—yl,
because J ;'(-) and p4(-) are increasing functions, p,(t) <t?/2 and
&2/8 <0 4(e) <&/4.

Remark 3.4. 1t follows from (3.1) and (3.4) that the projection operator
P, is uniformly continuous on every bounded set of the uniformly convex
and uniformly smooth Banach space B (cf. [19]).
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It is interesting to compare the Bjornestal’s estimate and a local version
of our estimate (3.4). By virtue of the small distance between x and y in
(1.3) and the condition ||x — x| =1 and ||y — y|| =1, the constant C in (3.4)
can be bounded by 2. Thus

IPox —Poyll <205 '(ps(BLC |x—y[)),  1<L<318. (35)

The constant in the parentheses of (3.5) is larger than the one in (1.3). This
is natural because (3.4) is a global estimate. In addition, the constants in
(1.3) have been obtained for the case 2 = M, were M is a linear subspace
of B. (One might note that the constants in the estimates (1.3), (3.1), (3.4))
and (3.5) as a rule do not have important meaning. On the contrary, the
orders of estimates play the main role and they are the same there).
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